DNA Scissors for genetic surgery?

A story started circulating last week focusing on zinc finger nucleases. These are enzymes that cut DNA in a very specific way, allowing for a new, different means of altering genes in vitro and possibly in vivo. Genetic treatments are the exciting future medicine we all hope for, especially with the genetic disorders that are inborn and uncorrectable otherwise. The ability to correct disorders by correcting the body at the genes is exciting, so this story generates lots of interest. Read it yourself here.

Better isn't always better?

In another link from LinkedIn, we have a story about a study started 12 years ago, in Africa. In the US, iron supplementation is a common part of pregnant women's life; the benefits to the developing child can't be overestimated. In Africa, many children suffer from iron-deficient anemia. It seemed a natural solution to supplement the diet with iron supplements and other vitamins. However, during the study, more children on the supplement died than those not on the supplement, bringing the study to an abrupt and early end. I'll let you read the story for yourself; the reasons for the confusing results still aren't entirely understood, but are being sought out in order to hopefully correct both the nutrient deficient and the fatal result of correcting it in areas where malaria is endemic. I highlight it, however, not only because it's another LinkedIn story, but because it serves as an excellent reminder of the law of unintended consequences: solving one problem may cause another, or several others. While this is a large-scale example of unintended consequences, even in your lab work, you may encounter the same problems. Look for more detail on this idea in future posts.

 

A (very!) brief overview of inflammation and your immune system

Another video from LinkedIn, this video from Pfizer shares how the immune system creates an inflammatory response and how the response works against the body in auto-immune disorders. The video is less than 5 minutes, and is only the most cursory of discussions, but it's a decent start and might be a semi-decent way to review these concepts if you need it.

The first of many...

I mentioned in an earlier post that I'd been stockpiling articles and posts for daily uploads. This is the first of those, but before I get into that, I want to share where many of these are coming from, because that is, by itself, an incredibly useful professional tool. Recently (between starting the blog and restarting the blog), I joined/became more active on LinkedIn. I found groups there, including groups by interest. Among them are microbiology & immunology groups, and many of the links I will be sharing were discovered when they showed up in my inbox via a LinkedIn group!

This may well be old news to many of you, but I didn't want anyone to overlook useful tools. Finally, remember: employers look at all online and social media when hiring, so be mindful of what you post (or what your friends may be able to post).

Now, with no further ado: A video on how the flu invades the human body. Because light microscopy can't capture viruses, this is an animation, but it is very well done and has explanation with it.

http://labroots.com/user/account-file/view-video/type/public-wall/id/676

Common drug linked to longevity in mice

Metformin, used worldwide to treat Type 2 diabetes (in which the body does not appropriately respond to insulin in the bloodstream, leading to excessive amounts of insulin in the blood), may be one of the most prescribed drugs for this condition. This drug doesn't just treat the insulin; unlike most drugs, this one also helps prevent many of the cardiovascular problems associated with the hormonal imbalances of diabetes. It is also commonly used to treat polycystic ovarian disorder and metabolic syndrome, two disorders still not completely understood. A new study released in Nature Communication this month revealed that when fed in very low doses to middle aged mice, metformin actually did more. This drug seemed to mimic the effects of a low-calorie diet; namely, it increased the lifespan of the mice in the experimental group. However, in higher doses, metformin did enough kidney damage to significantly shorten lifespans - in fact, it shortened lives by more than the lower dose lengthened them.

It's still an interesting result, and it's worth remember that studying animal models allow us to discover which paths are worth pursuing in human models, with all the risks that entails, in a safer, faster, more humane manner.

Watch for more on this to come...

My husband shared this TEDMed talk with me tonight, and I wanted to share it with you, along with Dr. Attia's blog. It takes courage for doctors to deviate from traditional wisdom or the accepted dogma and consider new approaches to existing problems. However, I've found that, in my own personal experience, the evidence he seems to be describing is accurate: I've found that eating more whole grains and fewer refined carbohydrates is far better for me and my diet than any low-fat approach ever attempted (low-fat seems to always actually result in higher cholesterol for me, meaning that my body compensates for the lower dietary intake by raising the production, indicating an internal imbalance that diet alone can't correct). I'll be following Dr. Attia, and I hope to have more information for you in the months and years to come.

A new approach to drug development...

The NIH recently announced a pilot program to help speed up drug development. Most drug development focuses on finding new molecules or compounds to treat existing disorders. The new program is looking for researchers to find uses for existing compounds, hopefully reducing both the cost and time involved in developing new drugs.

Using Viruses to Fight Bacteria?

In Tbilisi, Georgia (the country, not the state), Dr. Revaz Adamia is trying something different in the war against bacteria: instead of using antimicrobial drugs, he's treating infections with a special class of viruses instead. Why use viruses? The class in use, bacteriophages, target only bacteria, not the human infected. As a result, the virus infects and kills the infection that was making the patient sick. When the bacterial infection is gone, the virus, now without a host, dies off.

This solution is an alternative to the increasing problem of antimicrobial resistance. Many bacteria are increasingly resistant to the drugs used to treat patients infected with them. The most well-known case of resistance is MRSA, or Methicillan-resistant Staphylococcus aureus, a bacteria that frequently causes skin and respiratory infections or food poisoning. Resistant bacteria no longer respond to the drugs once used to treat infections, making treatment of patients increasingly difficult.

A new rapid diagnostic test...

There are illnesses that we take in stride (the common cold), and then there are the ones that scare us at a visceral level (Ebola). Sometimes, that fear is justified - some bacterial pathogens are both amazingly virulent and stunningly endurant (tetanus). Other pathogens are commonly misidentified at first, but frightening lethal in a very short time (Ebola again). However, sometimes the larger public panic about disease is a holdover from an older time. Leprosy, or Hansen's Disease, is mix of both. Misunderstood by most people, and nowhere near as contagious as feared, leprosy is certainly not the threat it is often portrayed to be. However, as another disorder that is often misdiagnosed and with terrible consequences, it certainly is terrible for the 200,000 people diagnosed each year and those living with it already. In this article from the BBC, a new rapid diagnostic test was discussed. This could allow for rapid and accurate detection of infection with Mycobacterium leprae, the bacteria which causes Hansen's disease. This could lead to earlier treatment with the cocktail of antimicrobial drugs needed to treat the disease. The sooner patients can be started on appropriate antimicrobials, the better their prognosis is: they are less likely to suffer the nerve damage that leads to tissue necrosis and disfigurement.